
COP 4600: Intro To OS (File Management) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2012

Introduction To Operating Systems

File Management

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cop4600/sum2012

COP 4600: Intro To OS (File Management) Page 2 © Dr. Mark Llewellyn

File Management In The OS

COP 4600: Intro To OS (File Management) Page 3 © Dr. Mark Llewellyn

File Management In The OS

• The File Manager (FM) controls every file in the system.

• The file management system is responsible for creating,

deleting, modifying, and controlling access to files – as well as

for managing resources used by files.

• The FM provides support for libraries of programs and data to

online users, for spooling operations, and for interactive

computing.

• The functions of the FM are performed in conjunction with the

Device Manager.

COP 4600: Intro To OS (File Management) Page 4 © Dr. Mark Llewellyn

Responsibilities of the File Manager

• The FM has a complex job. It is in charge of the system’s physical

components, its information resources, and the policies used to

store and distribute files.

• To carry out its responsibilities it must perform four tasks:

1. Keep track of where each file is stored.

2. Use a policy that will determine where and how the files will

be stored, making sure to efficiently use the available storage

space and provide efficient access to the files.

3. Allocate each file when a user has been cleared for access to

it, then record its use.

4. Deallocate the file when the file is to be returned to storage,

and communicate its availability to others who may be waiting

for it.

COP 4600: Intro To OS (File Management) Page 5 © Dr. Mark Llewellyn

Responsibilities of the File Manager

1. The FM keeps track of its files with directories that contain the

filename, its physical location in secondary storage, and important

information about each file.

2. The FM’s predetermined policy determines where each file is stored

and how the system, and users, will be able to access them simply –

via commands that are independent from device details. In addition,

this policy must determine who will have access to what material,

and this involves two factors: flexibility of access to the information

and its subsequent protection. The FM does this by allowing access

to shared files, providing distributed access, and allowing users to

browse through public directories. Meanwhile, the OS must protect

its files against system malfunctions and provide security checks via

account numbers and passwords to preserve the integrity of the data

and safeguard against tampering.

COP 4600: Intro To OS (File Management) Page 6 © Dr. Mark Llewellyn

Responsibilities of the File Manager

3. The system allocates a file by activating the appropriate secondary

storage device and loading the file into memory while updating its

records of who is using what file.

4. Finally, the FM deallocates a file by updating the file tables and

rewriting the file (if it was modified) to the secondary storage

device. Any processes waiting to access the file are then notified

of its availability.

COP 4600: Intro To OS (File Management) Page 7 © Dr. Mark Llewellyn

Some Basic Definitions

• A field is a group of related bytes that can be identified by the user

with a name, type, and size.

• A record is a group of related fields.

• A file is a group of related records that contains information to be

used by specific application programs to generate reports. This type

of file contains data and is sometimes called a flat file because it has

no connections to other files; unlike databases, it has no

dimensionality.

• A database appears to the FM to be a type of file, but databases are

more complex because they’re actually groups of related files that

are interconnected at various levels to give users flexibility of access

to the stored data. If the user’s database requires a specific structure,

the FM must be able to support it.

COP 4600: Intro To OS (File Management) Page 8 © Dr. Mark Llewellyn

Some Basic Definitions

• A program file contains instructions and data files contain data.

• As far as storage is concerned, the FM treats both program files and

data files exactly the same.

• Directories are listing of filenames and their attributes and are

treated in a manner similar to files by the FM.

• Data collected by the system to monitor system performance and

provide for system accounting is also collected into files.

• In reality, every program and data file accessed by the computer

system, as well as every piece of computer software, is treated as a

file.

COP 4600: Intro To OS (File Management) Page 9 © Dr. Mark Llewellyn

Communicating With The File Manager

• The user communicates with the FM via specific commands that

may be either embedded in the user’s program or submitted

interactively by the user.

• Examples of embedded commands are OPEN, CLOSE, READ,

WRITE, and MODIFY.

– OPEN and CLOSE pertain to the availability of a file for the program invoking

the command.

– READ and WRITE are the I/O commands.

– MODIFY is a specialized WRITE command for existing data files that allows

for appending records or for rewriting selected records in their original place

in the file.

COP 4600: Intro To OS (File Management) Page 10 © Dr. Mark Llewellyn

Communicating With The File Manager

• Examples of interactive commands are CREATE, DELETE,

RENAME, and COPY.

– CREATE and DELETE deal with the system’s knowledge of the file.

Actually, files can be created with other system-specific terms: for example,

the first time a user gives a command to SAVE a file, it’s actually created. In

other systems the OPEN NEW command within a program indicates to the FM

that a file must be created. Likewise, an OPEN…FOR OUTPUT command

instructs the FM to create a file by making an entry for it in the directory and

to find space for it on the secondary memory.

• These commands and many more, which are the interface between

the user and the hardware, were designed to be as simple as possible

to use so they’re devoid of the detailed instructions required to run

the device where the file may be stored.

COP 4600: Intro To OS (File Management) Page 11 © Dr. Mark Llewellyn

Communicating With The File Manager

• Examples of interactive commands are CREATE, DELETE,

RENAME, and COPY.

– CREATE and DELETE deal with the system’s knowledge of the file.

Actually, files can be created with other system-specific terms: for example,

the first time a user gives a command to SAVE a file, it’s actually created. In

other systems the OPEN NEW command within a program indicates to the FM

that a file must be created. Likewise, an OPEN…FOR OUTPUT command

instructs the FM to create a file by making an entry for it in the directory and

to find space for it on the secondary memory.

• These commands and many more, which are the interface between

the user and the hardware, were designed to be as simple as possible

to use so they’re devoid of the detailed instructions required to run

the device where the file may be stored.

COP 4600: Intro To OS (File Management) Page 12 © Dr. Mark Llewellyn

Communicating With The File Manager

• Since the commands to communicate with the FM are device

independent, this frees the user from the burden of knowing, or

needing to specify, where the file’s exact location on the disk page

(the cylinder, surface, and sector) or even the medium in which it is

stored (tape, magnetic disk, optical disc, etc.).

• This is fortunate for the user because file access is a complex

process.

• Each logical command is broken down into a sequence of low-level

signals that trigger step-by-step actions performed by the device and

supervise the progress of the operation by testing the device’s status.

COP 4600: Intro To OS (File Management) Page 13 © Dr. Mark Llewellyn

Functions of The File Manager

• Consider the diagram on the next page. Follow the diagram from

left to right.

• Users and application programs interact with the FM by means of

the commands like we just saw for creating and deleting files as

well as operations on the files. Before performing any of

operation, the FM must identify and locate the selected file. This

requires some sort of directory that serves to describe the location

of all files, plus their attributes as well as ensuring that only

authorized users of the file are permitted to perform an operation.

• The basic operations that a user or application may perform on a

file are at the record level.

COP 4600: Intro To OS (File Management) Page 14 © Dr. Mark Llewellyn

Communicating With The File Manager

COP 4600: Intro To OS (File Management) Page 15 © Dr. Mark Llewellyn

Functions of The File Manager

• The user or application views the file as having some structure that

organizes the records, such as a sequential structure. To translate the

user command into specific file manipulation commands, the access

method appropriate to this file structure must be employed.

• Whereas users and applications are concerned with records or fields,

I/O is done on a block basis. Thus, the records or fields of a file

must be organized as a sequence of blocks for output and unblocked

after input.

• To support block I/O of files, several functions are needed:

• Secondary storage must be managed. This involves allocation files

to free blocks on secondary storage and managing free storage so as

to know what blocks are available for new files and growth for

existing files.

COP 4600: Intro To OS (File Management) Page 16 © Dr. Mark Llewellyn

Functions of The File Manager

• In addition, as we saw when we covered device management,

individual block I/O requests must be scheduled on the device in

question.

• Both disk scheduling and file allocation are concerned with

optimizing performance. Thus, these two functions need to be

considered together. Furthermore, the optimization will depend on

the structure of the files and the access patterns. Accordingly,

developing an optimal file management system from the point of

view of performance is an exceedingly difficult task.

• The previous diagram suggests a division between what might be

considered the concern of the FM as a separate system utility and the

concern of the OS itself. The point of intersection between the two

being record-level processing.

COP 4600: Intro To OS (File Management) Page 17 © Dr. Mark Llewellyn

File Organization and Access

• File organization refers to the logical structuring of the records as

determined by the way in which they are accessed.

• The physical organization of the file on secondary storage depends

on the blocking strategy and the file allocation strategy, issues that

we’ll address later.

• In choosing a file organization, several criteria are important:

– Short access time

– Ease of update

– Economy of storage

– Simple maintenance

– Reliability

COP 4600: Intro To OS (File Management) Page 18 © Dr. Mark Llewellyn

File Organization and Access

• The relative priority of the criteria on the previous page will depend

on the application that will use the file.

• For example, if a file is only to be processed in batch mode, with all

of the records accessed every time, then rapid access for retrieval of

a single record is of minimal concern.

• A file stored on a CD-ROM will never be updated, and so ease of

update is not an issue.

• Some of the criteria will conflict. For example, for economy of

storage, there should be minimum redundancy in the data. On the

other hand, redundancy is a primary means of increasing the speed

of access to data. An example of this is the use of indices.

COP 4600: Intro To OS (File Management) Page 19 © Dr. Mark Llewellyn

File Organization and Access

• The number of different file organizations have been implemented

or just proposed is unmanageably large, even for a course that just

considered file systems alone.

• We’ll restrict ourselves to five fundamental file organizations that

are commonly implemented in many systems today.

– The heap, or pile file

– The sequential file

– The indexed sequential file

– The indexed file

– The direct, or hashed file

• The table on the next page summarizes the performance aspects of

these five file organizations.

COP 4600: Intro To OS (File Management) Page 20 © Dr. Mark Llewellyn

File Organization and Access

COP 4600: Intro To OS (File Management) Page 21 © Dr. Mark Llewellyn

File Organization and Access

COP 4600: Intro To OS (File Management) Page 22 © Dr. Mark Llewellyn

File Organization and Access

The Heap (Pile) File

• The least complicated form of file organization is the heap file.

• Data are collected in the order in which they arrive.

• Each record consists of one burst of data and there is no

requirement that records contain the same information or be of the

same length.

• The purpose of a heap is simply to accumulate the mass of data and

save it.

• Thus, each field must be self-describing, including a field name as

well as the value. The length of each field must be implicitly

indicated by delimiters, explicitly included as a subfield, or known

as default for that type of field.

COP 4600: Intro To OS (File Management) Page 23 © Dr. Mark Llewellyn

File Organization and Access

The Heap (Pile) File

• Because there is no structure to the heap file, record access is by

exhaustive search.

• If you wish to find a record that contains a particular field with a

particular value, it is necessary to examine each record in the heap

until the desired record is found or the entire file has been searched.

• Heap files are used when data are collected and stored prior to

processing or when the data are not easy to organize.

• Heap files utilize space well when the stored data vary in size and

structure and is perfectly adequate for exhaustive search scenarios,

and is easy to update. Beyond these uses it is unsuitable for most

applications.

COP 4600: Intro To OS (File Management) Page 24 © Dr. Mark Llewellyn

File Organization and Access

The Sequential File

• The most common form of file structure is the sequential file. In

this type of file, a fixed format is used for records. All records are

of the same length and consist of the same number of fixed-length

fields in the same order.

• Because the length and position of each field is know, only the

values of the fields are stored; the field name and length for each

field are attributes of the file structure.

• On particular field, usually the first field in each record, is referred

to as the key field. The key field uniquely identifies the record;

thus key values for different records must always be different.

• Records are stored in key sequence.

COP 4600: Intro To OS (File Management) Page 25 © Dr. Mark Llewellyn

File Organization and Access

The Sequential File

• Sequential files are typically used in batch applications and are

generally optimum for such applications if they involve processing

of all the records.

• The sequential file organization is the only file structure that is as

easily stored on tape as it is on disks.

• For interactive applications that involve queries and/or updates of

individual records, the sequential file provides poor overall

performance.

COP 4600: Intro To OS (File Management) Page 26 © Dr. Mark Llewellyn

File Organization and Access
The Indexed Sequential File

• A popular approach to overcoming the disadvantages of the sequential

file is the indexed sequential file. This file organization maintains the

key characteristic of the sequential file in that records are organized in

sequence based on a key field. However, two additional features are

added: an index to the file to support random access, and an overflow

file. (See page 21.)

• In the simplest case, a single level of indexing is used. In this case the

index is simply a sequential file.

• Each record in the index file consists of two fields: a key field, which is

the same as the key field in the main file, and a pointer into the main file.

To find a specific record, the index is searched to find the highest key

value that is equal to or precedes the desired key value. The search

continues in the main file at the location indicated by the pointer.

COP 4600: Intro To OS (File Management) Page 27 © Dr. Mark Llewellyn

File Organization and Access

Dense Index – an index record appears for every search-key value

in the file.

COP 4600: Intro To OS (File Management) Page 28 © Dr. Mark Llewellyn

File Organization and Access

Sparse Index – an index record appears for some search-key

values in the file.

COP 4600: Intro To OS (File Management) Page 29 © Dr. Mark Llewellyn

File Organization and Access
The Indexed Sequential File

• To understand the effectiveness of the indexed sequential file

organization, consider a sequential file with 1 million records.

Searching for a particular record will require on average accessing

½ million records.

• Instead suppose that a sparse index is built containing 1000 entries

with the keys roughly evenly distributed. Thus, each key value

covers approximately 1000 records. Now, on average it will

require 500 accesses to the index file followed by 500 accesses in

the main file to find a specific record.

• The average search length is thus reduced from 500,000 records to

1000 records!

COP 4600: Intro To OS (File Management) Page 30 © Dr. Mark Llewellyn

File Organization and Access
The Indexed Sequential File

• Additions to the main file are normally handled as follows:

– Each record in the main file contains a pointer field (not visible to an

application), that points to the overflow file.

– When a new record is to be inserted into the file, it is added to the overflow

file.

– The record in the main file that immediately precedes the new record in

logical sequence is updated to contain a pointer to the new record in the

overflow file. If the immediately preceding record is itself in the overflow

file, then the pointer in that record is updated.

• Periodically, the overflow file is merged into the main file in batch

mode during a file reorganization.

COP 4600: Intro To OS (File Management) Page 31 © Dr. Mark Llewellyn

File Organization and Access
The Indexed Sequential File

• To provide even greater access efficiency, multiple levels of indexing

can be used.

• The lowest level of index file is treated as a sequential file and a

higher-level index is created for that file. (See next page for an

illustration.)

• Using the same example file with 1 million records, assume that a

low-level index is built containing 10,000 entries and a higher level

index is built into that lower-level index which contains 100 entries.

The search begins at the highest level index, so on average 50 records

will be accessed, within the lower level index an average of 50 more

records will be accessed leading to an average access of 50 records in

the main file, or a total of 150 records accessed.

COP 4600: Intro To OS (File Management) Page 32 © Dr. Mark Llewellyn

Example of multi-

level indexing

COP 4600: Intro To OS (File Management) Page 33 © Dr. Mark Llewellyn

File Organization and Access
The Indexed File

• The indexed sequential file retains one limitation of the sequential

file: effective processing is limited to that which is based on a single

field of the file, i.e., the key field.

• When it is necessary to search for a record on the basis of some other

attribute in the file, both forms of sequential files are inadequate.

• In many applications, the flexibility to efficiently search by various

attributes is desirable.

• To achieve this flexibility, a structure is needed that employs multiple

indices, one for each type of field that may be the subject of a search.

• In a general indexed file, the concept of sequentiality and a single key

are abandoned. Records are accessed only through their indices.

COP 4600: Intro To OS (File Management) Page 34 © Dr. Mark Llewellyn

File Organization and Access
The Indexed File

• Both sparse and dense indices are commonly used in indexed files.

The illustration below shows a dense non-key index.

COP 4600: Intro To OS (File Management) Page 35 © Dr. Mark Llewellyn

File Organization and Access
The Indexed File

• Indexed files are used mostly in applications where timeliness of

information is critical and where data are rarely processed

exhaustively.

• Examples are airline reservation systems and inventory control

systems.

COP 4600: Intro To OS (File Management) Page 36 © Dr. Mark Llewellyn

File Organization and Access
The Hashed or Direct File

• The hashed, or direct, file exploits the capability found on disks to

access directly any block of a known address.

• As with sequential and indexed sequential files, a key field is required

in each record. However, there is no concept of sequential ordering.

• The hashed file makes use of a hashing function on the key value.

• Hashed files are often used where very rapid access is required, where

fixed-length records are used, and where records are always accessed

one at a time. Examples are directories, pricing tables, schedules, and

name lists.

• The next couple of pages illustrates static hashing.

COP 4600: Intro To OS (File Management) Page 37 © Dr. Mark Llewellyn

File Organization and Access
The Hashed or Direct File

• A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

• In a hash file organization we obtain the bucket of a record

directly from its search-key value using a hash function.

• Hash function h is a function from the set of all search-key values

K to the set of all bucket addresses B.

• Hash function is used to locate records for access, insertion as well

as deletion.

• Records with different search-key values may be mapped to the

same bucket; thus entire bucket has to be searched sequentially to

locate a record.

COP 4600: Intro To OS (File Management) Page 38 © Dr. Mark Llewellyn

File Organization and Access
The Hashed or Direct File

Hash file organization of account file, using branch-name as key

 (See figure in next slide.)

• There are 10 buckets,

• The binary representation of the ith character is assumed to be the

integer i.

• The hash function returns the sum of the binary representations of

the characters modulo 10

– E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

COP 4600: Intro To OS (File Management) Page 39 © Dr. Mark Llewellyn

File Organization and Access
The Hashed or Direct File

Hash file

organization of

account file, using

branch-name as key

(see previous slide

for details).

COP 4600: Intro To OS (File Management) Page 40 © Dr. Mark Llewellyn

File Organization and Access
The Hashed or Direct File

• Worst has function maps all search-key values to the same bucket; this

makes access time proportional to the number of search-key values in the

file.

• An ideal hash function is uniform, i.e., each bucket is assigned the same

number of search-key values from the set of all possible values.

• Ideal hash function is random, so each bucket will have the same

number of records assigned to it irrespective of the actual distribution of

search-key values in the file.

• Typical hash functions perform computation on the internal binary

representation of the search-key.

– For example, for a string search-key, the binary representations of all the

characters in the string could be added and the sum modulo the number of

buckets could be returned. .

COP 4600: Intro To OS (File Management) Page 41 © Dr. Mark Llewellyn

Record Blocking
• As the illustration on page 14 indicated, records are the logical unit of

access of a structured file, whereas blocks are the unit of I/O in

secondary storage. For I/O to be performed, records must be

organized as blocks.

• There are several issues to consider:

– First, should the blocks be of fixed or variable length? On most systems, blocks

are of fixed length. This simplifies I/O, buffer allocation in main memory, and

the organization of blocks on secondary storage.

– Next, what should the relative size of a block be compared to the average record

size? The tradeoff is this: The larger the block, the more records that are passed

in one I/O operation. If a file is being processed sequentially, this is an

advantage because it reduces the number of I/O operations. On the other hand, if

records are being accessed randomly and no particular locality of reference is

observed, then larger blocks result in unnecessary transfer of unused records.

COP 4600: Intro To OS (File Management) Page 42 © Dr. Mark Llewellyn

Record Blocking
• Given the size of a block, there are three methods of blocking that can

be used:

– Fixed blocking: Fixed length records are used, and an integral number of

records are stored in a block. There may be unused space at the end of each

block. This is internal fragmentation.

– Variable-length spanned blocking: Variable-length records are used and are

packed into blocks with no unused space (no internal fragmentation). Thus,

some records must span two blocks, with the continuation indicated by a

pointer to the successor block.

– Variable-length un-spanned blocking: Variable-length records are used, but

spanning is not employed. There will be wasted space in most blocks

because of the inability to use the remainder of a block if the next record is

larger than the remaining unused space.

• These three techniques are illustrated on the next three pages.

Assumption is that the file is stored in sequential blocks on the disk.

COP 4600: Intro To OS (File Management) Page 43 © Dr. Mark Llewellyn

Fixed Blocking

COP 4600: Intro To OS (File Management) Page 44 © Dr. Mark Llewellyn

Variable-Length Spanned Blocking

COP 4600: Intro To OS (File Management) Page 45 © Dr. Mark Llewellyn

Variable-Length Un-Spanned Blocking

COP 4600: Intro To OS (File Management) Page 46 © Dr. Mark Llewellyn

Record Blocking

• Fixed blocking is the common mode for sequential files with fixed-

length records.

• Variable-length spanned blocking is efficient in terms of storage

space and does not limit the size of records. However, this

technique is difficult to implement. Records that span two blocks

require two I/O operations, and files are difficult to update,

regardless of the file organization.

• Variable-length un-spanned blocking results in wasted space and

limits the size of a record to the size of a block.

COP 4600: Intro To OS (File Management) Page 47 © Dr. Mark Llewellyn

Record Blocking

• Another consideration with record blocking is the impact it may

have on the virtual memory hardware.

• In a virtual memory environment, the basic unit of I/O transfer is a

page. Pages are generally quite small, so that it is impractical to

treat a page as a block for un-spanned blocking.

• Accordingly, some systems combine multiple pages to create a

larger block for file I/O purposes.

COP 4600: Intro To OS (File Management) Page 48 © Dr. Mark Llewellyn

Secondary Storage Management

• On secondary storage, a file consists of a collection of blocks.

• The FM is responsible for allocating blocks to files.

• This raises two management issues. First, space on secondary

storage must be allocated to files, and second, it is necessary to

keep track of the space available for allocation.

• The two tasks are related in that the approach taken for file

allocation may influence the approach taken for free space

management.

• There is also some interaction, as we will see, between the file

structure and the allocation policy.

COP 4600: Intro To OS (File Management) Page 49 © Dr. Mark Llewellyn

File Allocation

• There are several issues involved in file allocation:

1. When a new file is created, is the maximum space for the file

allocated all at once? Preallocation or dynamic allocation?

2. Space is allocated to a file as one or more contiguous units

(which we’ll call portions). Thus, a portion is a contiguous set

of allocated blocks. The size of a portion can range from a

single block to the entire file. What size of portion should be

used for file allocation.

3. What sort of data structure or table is used to keep track of the

portions assigned to a file? As example of such a structure is

a file allocation table (FAT) found on DOS and some other

OS.

COP 4600: Intro To OS (File Management) Page 50 © Dr. Mark Llewellyn

Preallocation Versus Dynamic Allocation

• A preallocation policy requires that the maximum size of a file be

declared at the time of the file creation request.

• Some applications can reliably determine this value, others cannot,

and would thus probably tend to overestimate the file size required

so as to not run out of space. This would clearly be wasteful in the

long term.

• Thus, the advantage leans heavily toward dynamic allocation

schemes. These will allocate space to a file in portions as needed.

COP 4600: Intro To OS (File Management) Page 51 © Dr. Mark Llewellyn

Portion Size

• The second issue deals with portion size allocated to a file.

• At one extreme would be a portion large enough to hold the entire file.

At the other extreme would be a portion allocation of one block at a time.

• In choosing a portion size policy there is a tradeoff between efficiency

from the point of view of a single file versus overall system efficiency.

Four items must be considered:

– Contiguity of space increases performance, especially for
retrieve_next operations.

– Having a large number of small portions increases the size of the tables

needed to manage the allocation information.

– Having fixed-size portions (e.g., blocks) simplifies the reallocation of space.

– Having variable-size or small fixed-size portions minimizes waste of unused

storage due to over allocation.

COP 4600: Intro To OS (File Management) Page 52 © Dr. Mark Llewellyn

Portion Size

• Since the four items on the previous page interact and must be

considered together, the result is that there are only two major

alternatives:

– Variable, large contiguous portions: This will provide better

performance. The variable size avoids waste, and the file

allocation tables are small. However, space is hard to reuse.

– Blocks: Small fixed portions provide greater flexibility. They

may require large tables or complex structures for their

allocation. Contiguity has been abandoned as a primary goal;

blocks are allocated as needed.

COP 4600: Intro To OS (File Management) Page 53 © Dr. Mark Llewellyn

Portion Size

• Either option on the previous page is compatible with either

preallocation or dynamic allocation schemes.

• In the case of variable, large contiguous portions, a file is

preallocated one contiguous group of blocks. This eliminates the

need for a file allocation table; all that is required is a pointer to the

first block and the number of blocks allocated.

• In the case of blocks, all of the portions required are allocated at

one time. This means that the file allocation table for the file will

remain of fixed sized, because the number of blocks allocated is

fixed.

COP 4600: Intro To OS (File Management) Page 54 © Dr. Mark Llewellyn

Portion Size

• With variable-size portions, there is concern over the

fragmentation of free space. This is the same issue we considered

when we looked at memory management in a partitioned main

memory.

• Some possible strategies are:

– First fit: Choose the first unused contiguous group of blocks of

sufficient size from the free block list.

– Best fit: Choose the smallest unused group of blocks that is of

sufficient size.

– Nearest fit (Next fit): Choose the unused group of blocks of

sufficient size that is closest to the previous allocation for the

file to increase its locality.

COP 4600: Intro To OS (File Management) Page 55 © Dr. Mark Llewellyn

File Allocation Strategies

• Now that we’ve dealt with the issues of preallocation versus

dynamic allocation and portion size, the file issue to consider is the

specific file allocation strategies.

• There are three methods in common use today:

– Contiguous

– Chained

– Indexed

• The table on the next page summarizes some of the characteristics

of each strategy.

COP 4600: Intro To OS (File Management) Page 56 © Dr. Mark Llewellyn

File Allocation Strategies

COP 4600: Intro To OS (File Management) Page 57 © Dr. Mark Llewellyn

File Allocation Strategies: Contiguous

• With contiguous allocation, a single contiguous set of blocks is

allocated to a file at the time of file creation.

• This is a preallocation using variable-size portions. The file

allocation table needs just a single entry for each file, showing the

starting block and the length of the file.

• The figure on the next page illustrates a contiguous allocation

strategy.

COP 4600: Intro To OS (File Management) Page 58 © Dr. Mark Llewellyn

File Allocation Strategies: Contiguous

Note the external

fragmentation on the

disk. Currently there

are no sets of

contiguous blocks of

size 5 or larger.

COP 4600: Intro To OS (File Management) Page 59 © Dr. Mark Llewellyn

File Allocation Strategies: Contiguous

• Contiguous allocation is best from the point of view of the

individual sequential file. Multiple blocks can be read in at a time

to improve I/O performance for sequential processing.

• It is also easy to retrieve a single block. For example, if a file

starts at block b, and the ith block of the file is desired, its location

on the secondary storage is simply b+ i – 1.

• Contiguous allocation does allow for external fragmentation,

making it difficult to find contiguous blocks of space of sufficient

length. From time to time, it will be necessary to perform a

compaction algorithm to free up additional space on the disk.

• The previous scenario is shown on the next page after memory

compaction has occurred.

COP 4600: Intro To OS (File Management) Page 60 © Dr. Mark Llewellyn

File Allocation Strategies: Contiguous

After compaction has

been done there is

now a set of

contiguous blocks of

size 5 or larger.

COP 4600: Intro To OS (File Management) Page 61 © Dr. Mark Llewellyn

File Allocation Strategies: Chained

• At the opposite end of the strategies from contiguous allocation is

chained allocation.

• Typically, allocation using this strategy is on a block by block

basis (dynamic).

• Each block contains a pointer to the next block in the chain.

• Again, the file allocation table needs just a single entry for each

file, showing the starting block and the length of the file.

• Block selection is simple, as any available block can be added to

any chain.

• There is no external fragmentation to worry about since space is

added to a file one block at a time.

COP 4600: Intro To OS (File Management) Page 62 © Dr. Mark Llewellyn

File Allocation Strategies: Chained

COP 4600: Intro To OS (File Management) Page 63 © Dr. Mark Llewellyn

File Allocation Strategies: Chained

• One consequence of a chained allocation scheme is that there is no

accommodation of the principle of locality. Thus for sequential

processing, the following of a chain of pointers can drastically

slow down I/O processing.

• To overcome this problem, the system may periodically

consolidate files. This is a technique quite similar to memory

compaction, but it is done to bring file portions together rather than

to create large unallocated blocks of space.

• The illustration on the next page shows the disk after the file on the

previous page was consolidated.

COP 4600: Intro To OS (File Management) Page 64 © Dr. Mark Llewellyn

File Allocation Strategies: Chained

After the file was

consolidated

COP 4600: Intro To OS (File Management) Page 65 © Dr. Mark Llewellyn

File Allocation Strategies: Indexed

• Indexed allocation schemes attempt to address the problems of

both contiguous and chained allocation schemes.

• In this case the file allocation table contains a separate one-level

index for each file; the index has one entry for each portion

allocated to the file.

• Typically, the file indexes are not physically stored as part of the

file allocation table. Rather the file index for a file is kept in a

separate block, and the entry for the file in the file allocation table

points to that block.

• Allocation can be based on either fixed-size blocks or variable-size

portions. Allocation by blocks eliminated external fragmentation,

whereas allocation by variable-size portions improves locality.

COP 4600: Intro To OS (File Management) Page 66 © Dr. Mark Llewellyn

File Allocation Strategies: Indexed

Indexed allocation

with block portions

COP 4600: Intro To OS (File Management) Page 67 © Dr. Mark Llewellyn

File Allocation Strategies

Indexed allocation

with variable-sized

portions

